NIRMA UNIVERSITY

Institute of Technology

M Tech Computer Science and Engineering

Semester - I

L	T	Р	С
3	0	2	4

Course Code	3CS1109
Course Title	Complexity Theory and Algorithms

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. comprehend time & space complexity and formal aspects of algorithms
- 2. identify appropriate data structures and methodologies for efficient algorithm design
- 3. design and implement efficient algorithms using various approaches

L	T	P	C
3	0	2	4

Course Code	3CS1110
Course Name	High Performance Computing Architecture

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to –

- 1. comprehend various High Performance Computing (HPC) system architectures
- 2. identify design issues related to the architectural characteristics and performance of HPC systems
- 3. design and implement compute intensive applications on HPC platform

L	T	P	\mathbf{C}
3	0	2	4

Course Code	3CS1111
Course Name	Applied Machine Learning

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

1. comprehend statistical methods as basis of machine learning domain

- 2. apply and evaluate variety of machine learning algorithms
- 3. implement machine learning techniques to solve problems in interdisciplinary domains

L	T	P	C
3	0	2	4

Course Code	3CS1112
Course Name	Advanced Database Systems

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. assess various storage and retrieval methods through appropriate indexing
- 2. design and analyze efficiency of algorithms for database operations
- 3. comprehend contemporary database architectures and its relevant issues

L	T	P	C
3	0	0	3

Course Code	3CS1113
Course Name	Applied Mathematics for Computer Science

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. comprehend the mathematical fundamentals related to sets, probability, statistics, linear algebra and mathematical optimization
- 2. apply the mathematical principles to solve wide range of problems in computer science
- 3. use the mathematical concepts as per the need of the application

L	T	P	C
1	0	0	0

Course Code	3SP1103
Course Title	Ethics for Data Science

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. describe the principles of fairness, accountability and transparency in data science
- 2. realize the ethical considerations regarding research, privacy and control of information and big data
- 3. comprehend the contemporary practices in data handling

Semester - II

L	T	P	C
3	0	2	4

Course Code	3CS12D302
Course Name	Deep Learning and Applications

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. comprehend the strengths and weaknesses of deep networks
- 2. analyze suitability of different deep networks for variety of problems
- 3. design and implement deep networks for solving problems pertaining to computer science and interdisciplinary research

L	T	P	C
3	0	2	4

Course Code	3CS12D101
Course Name	Embedded System Security

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. comprehend the basics of embedded firmware, hardware and software vulnerabilities and their causes
- **2.** identify the vulnerabilities related to embedded systems using state of the art tools and technologies
- 3. understand and apply countermeasures against the introduced attacks

L	T	P	C
3	0	2	4

Course Code	3CS12D102
Course Name	Wireless Networks

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. recognize design issues involved in different wireless networks
- 2. employ available technologies to satisfy various application requirements
- 3. analyze proposed technological solutions

L	T	P	C
2	0	2	3

Course Code	3CS12D201
Course Name	Blockchain Technology

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. comprehend the structure of a Blockchain networks
- 2. evaluate security issues relating to Blockchain and cryptocurrency
- 3. design and analyze the applications based on Blockchain technology

L	T	P	C
2	0	2	3

Course Code	3CS12D202
Course Title	Human Computer Interaction

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. evaluate user interfaces and detect usability problems by doing usability studies with human subjects
- 2. simulate how a user would understand and attempt to use an interface using an analytical method such as cognitive walkthrough
- 3. apply an appropriate interaction style for a given need
- 4. implement the HCI techniques to build multimodal GUI

L	T	P	C
2	0	2	3

Course Code	3CS22D202
Course Name	Quantum Computing

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. comprehend the principles of mathematics and physics of quantum computation
- 2. identify applications of quantum computing
- 3. apply various security measures for quantum communication

L	T	P	C
3	0	2	4

Course Code	3CS12D306		
Course Title	Secured Software Design and Enterprise		
Course Title	Computing		

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. differentiate between various software vulnerabilities
- 2. identify software process vulnerabilities for an organization
- 3. monitor resources consumption in a software
- 4. interrelate security and software development process