NIRMA UNIVERSITY

Institute:	Institute of Technology	
Name of Programme:	B. Tech. (All)	
Course Code:	XXXXX	
Course Title:	Chemistry	
Course Type:	Introductory	
Year of introduction:	2022-2023	

L	T	Practical component				C
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to -

1.	illustrate the basic fundamentals and defend their application in various	(BL1)
	fields of engineering	

- 2. classify the materials on the basis of their properties. (BL2)
- 3. select the appropriate experimental method of analysis and interpret its result (BL3)
- 4. identify and apply the principles of green chemistry in improving the existing technology (BL3)

Syllabus:

Total Teaching hours: 30

Unit	Final Version of Syllabus		
Unit I	Water and its Treatment: Introduction, Sources of water impurities, Hardness of water, Softening of water, Desalination processes, Introduction to Waste-water treatments, Specifications for drinking water (BIS standards).	07	
Unit II	Fuel: Calorific Value, Types of fuel, Selection of fuels, Analysis of coal:- Proximate and ultimate analysis, Flue gases: Orsat apparatus, Alternative fuels, Green hydrogen.	05	
Unit III	Lubricants: Introduction, Classification and functions of lubricants, Mechanisms of Lubrication, Properties:- Lubricating oil and Greases, Selection of lubricants.	04	
Unit IV	Corrosion Science: Introduction, Types of corrosion, Mechanism of corrosion, Factors Affecting Corrosion, Corrosion control and Preventions.	05	
Unit V	Green Chemistry: Overview, Set of Principles of Green Chemistry, Importance and application of Green Synthesis.	04	
Unit VI	Engineering Materials: High Temperature Polymers, Conducting Polymers, Foamed Plastics, Polymer Composites, Organic Electronic Materials, Explosives:- Introduction, Classification, Characteristics, Disarmament, Weapons of Mass Destruction (WMD), Peaceful uses of explosives, Fuel cells and Batteries.	05	

- 24 -

Self-Study:

Self-study contents will be declared at the commencement of the semester. Around 10 % of the questions will be asked from the self-study contents.

Laboratory Works:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings/ References:

- 1. P.C. Jain and Monika Jain, Textbook of Engineering Chemistry, Dhanpat Rai Publishing Co.
- 2. Shashi Chawla, Textbook of Engineering Chemistry, Dhanpat Rai Publishing Co.
- 3. S.S. Dara, Textbook of Engineering Chemistry, S. Chand and Company.
- 4. Mike Lancaster, Green Chemistry: An Introductory Text, Royal Society of Chemistry.
- 5. J.C. Kuriacose and J. Rajaram, Chemistry in Engineering and Technology, Tata Mc Graw Hill.
- 6. Prasanta Rath, Engineering Chemistry, Cengage Learning.
- 7. Sunita Rattan, A Textbook of Engineering Chemistry, S.K. Kataria & Sons.
- 8. O.G. Palanna, Engineering Chemistry, Tata Mc Graw Hill.

Practical List

Sr. Practical Estimation of temporary, permanent, and total hardness of water sample 1 2 Determination of strength of Na₂CO₃ and NaHCO₃ in water sample by using standard HCl solution Determination of moisture content in coal sample 3 4 Preparation of Urea-formaldehyde resin 5 pH metric titration of strong acid with strong base 6 Conductometric titration of strong acid and strong base 7 Determination of penetration index of lubricating grease Determination of viscosity of lubricating oil by Redwood viscometer 8 Determination of the flash point and fire point of a lubricant or fuel by 9 Pensky-Marten's apparatus Determination of aniline point of an oil sample 10 Redox titration of ferrous sulphate with potassium permanganate 11 12 Determination of the cloud point and pour point of a lubricant 13 Determination of the saponification number of an oil 14 Virtual Lab: Determination of hardness of various water samples Virtual Lab: Determination of alkalinity of various water samples 15