NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B.Tech. First Year
Course Code:	XXXX
Course Title:	Physics
Course Type:	Introductory
Year of Introduction:	2022-23

Credit Scheme

LT		Practical component			C	
		LPW	PW	W	S	
2	0	2	1-	-	-	3

Course Learning Outcomes (CLOs):
At the end of the course, the student will be able to –

1.	Understand the fundamental principles of Physics behind the	(BL2)
	current technological advancements	
2.	Apply the concepts of Physics for solving engineering problems	(BL3)
3.	Analyse the existing technological limitations with the help of modern Physics concepts	(BL4)
4.	Measure various characteristics of physical quantities and establish the proof of concepts	(BL4)

Syllabus:

Total Teaching Hours: 30

Unit	Syllabus	Teaching Hours
Unit 0	Importance of Applied Physics in Engineering	01
	Significance of Applied Physics in Engineering, Challenges, requirements,	
	and applications of Physics in engineering.	
Unit I	Lasers and Holography	04
	Introduction, Basics of Interaction of radiation with matter, Condition for	
	light Amplification, Population inversion and metastable state, pumping,	
	the principle pumping scheme: Three and Four-level scheme, Construction	
	and working of the optical resonator, Ruby Laser, Applications of the laser	
	beam, Holography.	
Unit II	Introduction to Fiber Optics	04
	Introduction of fiber-optic system, Principle and construction of fiber cable, Acceptance angle and numerical aperture, Types of Optical fiber:	
	Based on material & based on the mode of propagation, Index profile,	
	Fiber optic communication link, Losses in optical fiber communication,	
	Advantages of fiber optic system.	
	2/	

Unit III	Introductory Quantum Mechanics	04
	Introduction to Quantum Physics, Compton effect, Wave function,	0.1
	Probability density, Normalization of the wave function, Expectation	
	values, Quantum Mechanical Operators, Schrodinger Equations- Time-	
T1 1. TX	dependent and independent forms, Particle in a three-dimensional box.	
Unit IV	Semiconductor Physics	04
	Molecular Orbital theory- bonding, antibonding, and non-bonding orbitals,	
	Formation of energy bandgap in semiconductors, Classification of	
	bandgap- direct and indirect, optical and electronic, Fermi Dirac	
	distribution function, Fermi Energy and Energy band structure of various	
	semiconductors, Variation of Fermi energy level with carrier concentration	
Unit V	and temperature.	
Unit v	Fundamentals of Nanomaterials	05
	Introduction – Nanoscale; Nanomaterials: Methods for the synthesis of	
	nanomaterials, Properties of nanomaterials – Electrical, Magnetic, Optical,	
	Mechanical, Characterization techniques – X-ray Diffraction (XRD) -	
	Single Crystal, Powder, and Laue techniques, Scanning Electron	
	Microscopy, Tunnelling Electron Microscopy, Nanostructures; Carbon nanotubes Characteristics and applications, Nanotechnology and	
	nanotubes Characteristics and applications, Nanotechnology and environment.	
Unit VI	Acoustics and Ultrasonics	0.4
	Introduction, Defection due to the reflection of sound, Sabine's empirical	04
	formula, Reverberation theory, Eyring's equation, Acoustical defects and	
	their remedies, Acoustic materials, Ultrasonic waves, Piezoelectric	
	method, Properties and application of ultrasonic waves.	
Unit VII	Physics of Industry Instruments	04
	CO ₂ laser, Semiconductor diode laser, Fiber optic sensors, Nuclear	04
	accelerator – LINAC, Cyclotron, Detectors - GM Counter, Scintillation	
	Detector, Vacuum pumps - rotary pump, diffusion pump, Ion pump,	
	Measurement of vacuum with different gauges	

Self-Study:

Self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from the self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. M. N. Avadhnulu and P. Kshirsagar, A Text Book of Engineering Physics, S Chand.
- 2. T. Pradeep, Nano: The Essentials, New Central Book Agency.
- 3. B. L. Theraja, Physics for Engineers, S Chand Publication.
- 4. K. Thyagarajan and Ajoy Ghatak, Lasers: Fundamentals and Applications, Springer.
- 5. Nouredine Zettili, Quantum Mechanics: Concepts and Applications, Wiley.
- 6. G. Aruldhas, Engineering Physics, PHI.
- 7. Sulbha Kulkarni, Nanotechnology: Principles and Practices, Springer.

L= Lecture, T= Tutorial, P= Practical, C= Credit

List of Practical

Sr. No.	Title
1.	To analyse fundamental units and dimensions (prerequisite)
2.	To estimate the solar energy in terms of solar power and V-I characteristics, the
	power load characteristics of the solar cell
3.	To evaluate the charge-to-mass ratio for electrons by applying a perpendicular magnetic field on the electron beam in CRT
4.	To measure the electromotive force by dynamic magnetic field and verification of Faraday's law
5.	To measure the energy efficiency of a power transformer.
6.	To measure the resistivity of semiconductors by four-point probe method at
	different temperatures.
7.	Determination of forbidden energy band gap in a semiconductor using a
	junction diode
8.	To measure the wavelength of light from a sodium vapour lamp and find the
	thickness of thin film using Newton's rings method
9.	To determine the velocity of ultrasonic waves in liquid and its compressibility
	using an ultrasonic interferometer
10.	To determine the refractive index of a liquid by lens method
11.	Resistivity measurement by Hall Effect for semiconductor sample
12.	To determine the value of Planck's constant by the reverse photoelectric
	method
13.	To study characteristics of Geiger – Muller Tube
14	Virtual Laboratory Experiment on Resistivity measurement by Hall Effect for
	metal samples
15	To measure the wavelength of light from various light sources and find the
	thickness of thin film using Newton's rings method (Virtual Laboratory)

